by DR MIKE WILLIAMS via UKColumn
Excerpts
In life and in science, changes have consequences. With hindsight, the bad ones are easy to see, some may argue. But when we examine the natural consequences of changes in the arena of Covid vaccine science, one might be forgiven for asking: surely someone must have cautioned against doing that? Of course it behoves us to state here, before we examine those consequences: that’s why new drug/vaccine products are supposed to be thoroughly tested before they are given to large populations.
In 2005, Drs. Weissman and Kariko discovered a way to protect foreign mRNA from the body’s immune system. That scientific milestone would be key to the advancement of the mRNA vaccines in 2020.
[. . .]
Their key discovery, that by modifying the RNA code (modifying the nucleoside uridine), resulted in ablating the innate immune response, involved toll-like receptors (TLR).
This discovery was adopted in the mRNA technology used in Covid vaccines, in order that the foreign vaccine mRNA could enter cells without being destroyed.
[. . .]
The body possesses two broad parts to its immune system: innate and specific. The innate is the first to go into action against foreign invaders, including foreign mRNA from a vaccine.
By modifying the Uridine in the Pfizer vaccine mRNA code, the foreign mRNA is able to bypass part of the body’s first line of defence — the Innate Immune System.
How does that simple removal of one letter of code from mRNA achieve that?
It does so by affecting Toll Like Receptors (TLR): the alarm signal of the Innate Immune System.
The key TLRs affected are TLR 3, TLR 7 and TLR 8. They act as sentries, whose job is to recognise foreign invaders by way of their form or patterns; a bit like an aircraft spotter in World War II. If the wrong type of shape is recognised in the sky then alarm bells sound and anti-aircraft fire kicks in. In the case of TLRs, the immune system gets activated.
What if you could by-pass those spotters? No alarms, no immune system response; and your payload, foreign mRNA in this example, gets through safely. Then your drug/vaccine has a much greater chance of working.
At that point in the original experiments to discover how to turn off toll-like receptors (and subsequently in the design of the vaccines), the question should have been asked: but what would be the consequences of switching off that important early warning system?
If that question was raised it appears to have fallen on deaf ears and not been answered until, possibly, now.
Three concerns are raised by the above.
- The ability of the immune system to fight viruses has been diminished; specifically, the ability to fight SARS-CoV-2 may be affected;
- Vaccine-induced innate immune tolerance may affect other vaccines; and finally
- What other parts of the immune system may be affected.
Clinical clues?
On social media and online magazines we are now seeing reports of patients with worsening cancer following SARS-CoV-2 vaccination.
[. . .]
Dr Ryan Cole, a Pathologist, in a recent presentation, stated that he is observing a 20 x uptick in endometrial cancer, and increases in other cancers post SARS-CoV-2 vaccination.
And even more concerning: a senior consultant with decades of diagnosis and treatment at a dedicated cancer hospital described to a journalist off the record that all his vaccinated cancer patients were coming out of remission; and that cancer was jumping between organs, spreading at a speed that he has never seen before (pers. Comm.).
[. . .]
We can see from the above research that scientists are concerned that parts of the immune system are being negatively affected both by Covid-19 infection and SARS-CoV-2 vaccination that may be leading to reactivation of Varicella infection. Stimulation of toll-like receptors has been suggested, but the implicit design of the mRNA SARS-CoV-2 vaccines is such that they will stimulate certain toll-like receptors less; TLR 7 & 8 are RNA sensors and would be affected by Uridine changes to vaccine mRNA. TL4 would not.
Regardless, researchers have demonstrated that The response of innate immune cells to TLR4 and TLR7/8 ligands was lower after BNT162b2 vaccination. And that’s not good for the innate immune response.
Immune Dysregulation
The immune system is highly regulated with interconnected paths that immunologists are still discovering, and by changing one part you affect another. If SARS-CoV-2 vaccination is changing something in our immune system, be it via changes in vaccine mRNA code and negatively affecting toll-like receptors or by other means, what else does it change in our immunity?
An uptick in cancer? And infection?
The toll-like receptors 7 & 8 are described in the literature as important in eliciting the vital CD8 T cell response. With that in mind, let us remind ourselves what Drs. Weissman and Kariko wrote in 2005 in Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA:
We show that RNA signals through human TLR3, TLR7, and TLR8, but incorporation of modified nucleosides m5C, m6A, m5U, s2U, or pseudouridine ablates activity.
That very technology is being used in SARS-CoV-2 vaccines: It switches off TLR 7 & 8 signalling, that the immune system needs to fight infection and cancer.
Read the whole article here: Stabilising the Code
Sorry to be dim, but is this saying that the partial disabling of the immune system used by mRNA vaccines is permanent?
Yeah, I have the same question.
I have no idea what to do as I am in Australia and I either have to get it, or lose my job. I had no intention of getting it before it was mandated, but ever since the mandates, I’ve really started to try and read more about it, and the more I read, the less I want any of them. I don’t understand how people are willingly taking it. It’s insanely hard here in AU to do anything. The mandates are full on and it’s very hard to get a job without it.
[…] mRNA Vaxx Mechanism Explained – The Suppression of Innate Immune System. | Algora Blog Quote: […]